Showing posts with label mammals. Show all posts
Showing posts with label mammals. Show all posts

Tuesday, January 11, 2011

Evolution: study finds commonality in fish and mammal development

Evolution can appear to be a very complex process. How biodiversity developed over millions of years, producing thousands of various animal and plant species, is continually being studied and surprises seem to crop up with every new study. Whether piecing together the many branches and various dead ends that ultimately resulted in homo sapiens or deciphering the genetic code that determines who has a tail or who has wings, scientists are, piece by piece, assembling the puzzle that makes up nature's grand experiment in life on Earth.

And yet, from time to time, they discover within the puzzle a point of commonality - a puzzle piece that is being used over and over again - and the end result in diversity becomes simply a matter of timing. A recent study, published in the Proceedings of the National Academy of Sciences, highlights a genetic process that determines gill structures in elephant fish and sharks and its similarities with the development of limbs in lizards and mammals.

The elephant fish is a distant relative to sharks and rays, sharing the same type of cartilage-based skeletal system and also an outgrowth called a branchial ray - an appendage
that extends from the skeleton and forms a supporting structure for the gills. Somewhere in the development process, the elephant develops one set of branchial ray while sharks develop several. To determine how or when this takes place requires studying things at the embryonic level. And for the scientists involved in the study, from Cambridge and the University of Chicago, this was a challenge as elephant fish embryos are difficult to find. Elephant fish lay their eggs in cold, muddy ocean bottoms, so the researchers spent months diving and searching possible breeding sites in Australia and New Zealand, gathering the needed embryos.

The researchers traced the impact of a genetic factor called Shh - the sonic hedgehog gene. It is common to both the elephant fish and sharks but when it expresses itself in the early developmental process determines whether there's one branchial ray set or more. This same process appears in the development of lizards and mammals, helping to determine outgrowths like limbs and number of toes for different species.

"The research highlights how evolution is extremely efficient, taking advantage of preexisting mechanisms, rather than inventing new ones," said Dr. Andrew Gillis of Cambridge University. "By simply tinkering with the timing of when or where a gene is expressed in an embryo, you can get very different anatomical outcomes in adults."

"It's basically showing that the limb story is part of a much more general narrative, which is the story of outgrowths," said Dr. Neil Shubin, University of Chicago. "There's a common development toolkit for all the outgrowths that we know in the body; they're all versions of one another in a developmental sense."

While analyzing all of the minute components found within the evolutionary process might seem a little esoteric or obscure to some, one of the advantages in understanding species development is to then be able to consider how or what might change that process. What environmental factors might come into play to alter or disrupt embryonic development, producing an evolutionary course correction or a tragic mutation? How easily can an evolutionary process, millions of years in the making, be altered by pollution, climate change, or other shifts in the norm?

As we study and learn more about both the complexity and the commonality or simplicity of evolutionary development, we can begin to see nature's wondrous puzzle of life and how the pieces can possibly be rearranged for better or for worse.

Read about the study in EurekAlert!
Read more in a Cambridge University press release.

Read the entire report published in Proceedings of the National Academy of Sciences.

Tuesday, October 7, 2008

Updating the Red List: wild mammals in peril

According to the World Conservation Congress, meeting in Barcelona, Spain, up to 25% of all wild mammals are threatened with extinction due primarily to loss of habitat and hunting/poaching. Of that total, up to 33% of all marine mammals are in peril - particularly dolphins which get caught in fishing nets and drown.

The figures released are part of an update of the Red List which lists all threatened species and is maintained by the International Union for the Conservation of Nature. You can view the entire list at their web site (click here).

The reasons for this plight of so many animals runs the gamut - from habitat loss for lumber or farming in developing countries to meeting the demand for "luxury" items like chimp and gorilla meat. Whatever the reason, the loss of any animal has an impact on the overall balance and health of the local ecosystem. In fact, biodiversity - having a wide range of species - is a key element to any healthy ecosystem. This has always been one of the cornerstones of the evolutionary process.

A precise accounting of all marine mammal species is complicated by the challenges in locating these animals, compared to land-based species. Says Jan Schipper of Conservation International, "If you don't know where they are or how many there are, then it's hard to determine if they have viable populations or [are] threatened with extinction." That means that the conservative numbers offered by the World Conservation Congress could be much higher. (Read article by Ken Weiss/Los Angeles Times).